N (variable)
NBasePropFunct.DoubleInduction.R [in Coq.Numbers.Natural.Abstract.NBase]
NBasePropFunct.DoubleInduction.R_wd [in Coq.Numbers.Natural.Abstract.NBase]
NBasePropFunct.PairInduction.A [in Coq.Numbers.Natural.Abstract.NBase]
NBasePropFunct.PairInduction.A_wd [in Coq.Numbers.Natural.Abstract.NBase]
NBasePropFunct.TwoDimensionalInduction.R [in Coq.Numbers.Natural.Abstract.NBase]
NBasePropFunct.TwoDimensionalInduction.R_wd [in Coq.Numbers.Natural.Abstract.NBase]
New2OldRing.R [in Coq.setoid_ring.Ring_equiv]
New2OldRing.radd [in Coq.setoid_ring.Ring_equiv]
New2OldRing.reqb [in Coq.setoid_ring.Ring_equiv]
New2OldRing.reqb_ok [in Coq.setoid_ring.Ring_equiv]
New2OldRing.rI [in Coq.setoid_ring.Ring_equiv]
New2OldRing.rmul [in Coq.setoid_ring.Ring_equiv]
New2OldRing.rO [in Coq.setoid_ring.Ring_equiv]
New2OldRing.ropp [in Coq.setoid_ring.Ring_equiv]
New2OldRing.rsub [in Coq.setoid_ring.Ring_equiv]
New2OldRing.Rth [in Coq.setoid_ring.Ring_equiv]
New2OldSemiRing.R [in Coq.setoid_ring.Ring_equiv]
New2OldSemiRing.radd [in Coq.setoid_ring.Ring_equiv]
New2OldSemiRing.reqb [in Coq.setoid_ring.Ring_equiv]
New2OldSemiRing.reqb_ok [in Coq.setoid_ring.Ring_equiv]
New2OldSemiRing.rI [in Coq.setoid_ring.Ring_equiv]
New2OldSemiRing.rmul [in Coq.setoid_ring.Ring_equiv]
New2OldSemiRing.rO [in Coq.setoid_ring.Ring_equiv]
New2OldSemiRing.SRth [in Coq.setoid_ring.Ring_equiv]
NMORPHISM.ARth [in Coq.setoid_ring.InitialRing]
NMORPHISM.R [in Coq.setoid_ring.InitialRing]
NMORPHISM.radd [in Coq.setoid_ring.InitialRing]
NMORPHISM.req [in Coq.setoid_ring.InitialRing]
NMORPHISM.Reqe [in Coq.setoid_ring.InitialRing]
NMORPHISM.rI [in Coq.setoid_ring.InitialRing]
NMORPHISM.rmul [in Coq.setoid_ring.InitialRing]
NMORPHISM.rO [in Coq.setoid_ring.InitialRing]
NMORPHISM.ropp [in Coq.setoid_ring.InitialRing]
NMORPHISM.Rsth [in Coq.setoid_ring.InitialRing]
NMORPHISM.rsub [in Coq.setoid_ring.InitialRing]
NMORPHISM.SReqe [in Coq.setoid_ring.InitialRing]
NMORPHISM.SRth [in Coq.setoid_ring.InitialRing]
NOrderPropFunct.RelElim.R [in Coq.Numbers.Natural.Abstract.NOrder]
NOrderPropFunct.RelElim.R_wd [in Coq.Numbers.Natural.Abstract.NOrder]
NStrongRecPropFunct.StrongRecursion.A [in Coq.Numbers.Natural.Abstract.NStrongRec]
NStrongRecPropFunct.StrongRecursion.Aeq [in Coq.Numbers.Natural.Abstract.NStrongRec]
NStrongRecPropFunct.StrongRecursion.Aeq_equiv [in Coq.Numbers.Natural.Abstract.NStrongRec]
NStrongRecPropFunct.StrongRecursion.FixPoint.f [in Coq.Numbers.Natural.Abstract.NStrongRec]
NStrongRecPropFunct.StrongRecursion.FixPoint.f_wd [in Coq.Numbers.Natural.Abstract.NStrongRec]
NStrongRecPropFunct.StrongRecursion.FixPoint.step_good [in Coq.Numbers.Natural.Abstract.NStrongRec]
NTypeIsNAxioms.Induction.A [in Coq.Numbers.Natural.SpecViaZ.NSigNAxioms]
NTypeIsNAxioms.Induction.AS [in Coq.Numbers.Natural.SpecViaZ.NSigNAxioms]
NTypeIsNAxioms.Induction.A_wd [in Coq.Numbers.Natural.SpecViaZ.NSigNAxioms]
NTypeIsNAxioms.Induction.A0 [in Coq.Numbers.Natural.SpecViaZ.NSigNAxioms]
NTypeIsNAxioms.Induction.B [in Coq.Numbers.Natural.SpecViaZ.NSigNAxioms]
NWORDMORPHISM.ARth [in Coq.setoid_ring.InitialRing]
NWORDMORPHISM.R [in Coq.setoid_ring.InitialRing]
NWORDMORPHISM.radd [in Coq.setoid_ring.InitialRing]
NWORDMORPHISM.req [in Coq.setoid_ring.InitialRing]
NWORDMORPHISM.Reqe [in Coq.setoid_ring.InitialRing]
NWORDMORPHISM.rI [in Coq.setoid_ring.InitialRing]
NWORDMORPHISM.rmul [in Coq.setoid_ring.InitialRing]
NWORDMORPHISM.rO [in Coq.setoid_ring.InitialRing]
NWORDMORPHISM.ropp [in Coq.setoid_ring.InitialRing]
NWORDMORPHISM.Rsth [in Coq.setoid_ring.InitialRing]
NWORDMORPHISM.rsub [in Coq.setoid_ring.InitialRing]
NZBasePropSig.CentralInduction.A [in Coq.Numbers.NatInt.NZBase]
NZBasePropSig.CentralInduction.A_wd [in Coq.Numbers.NatInt.NZBase]
NZCyclicAxiomsMod.Induction.A [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.Induction.AS [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.Induction.A_wd [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.Induction.A0 [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZCyclicAxiomsMod.Induction.B [in Coq.Numbers.Cyclic.Abstract.NZCyclic]
NZDomainProp.InitialDontExists.succ_onto [in Coq.Numbers.NatInt.NZDomain]
NZDomainProp.InitialExists.init [in Coq.Numbers.NatInt.NZDomain]
NZDomainProp.InitialExists.Initial [in Coq.Numbers.NatInt.NZDomain]
NZDomainProp.InitialExists.SuccPred.eq_decidable [in Coq.Numbers.NatInt.NZDomain]
NZOrderPropSig.Induction.A [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.Induction.A_wd [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.Induction.Center.LeftInduction.A' [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.Induction.Center.LeftInduction.left_step [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.Induction.Center.LeftInduction.left_step' [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.Induction.Center.LeftInduction.left_step'' [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.Induction.Center.RightInduction.A' [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.Induction.Center.RightInduction.right_step'' [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.Induction.Center.RightInduction.right_step [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.Induction.Center.RightInduction.right_step' [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.Induction.Center.z [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.WF.Rgt [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.WF.Rlt [in Coq.Numbers.NatInt.NZOrder]
NZOrderPropSig.WF.z [in Coq.Numbers.NatInt.NZOrder]